Tech Insights

What Is Data Engineering And Why Does It Matter?

Duncan Munene
- 3 min. to read

Data engineering is an important field that focuses on data gathering, curation, and collection. Data is the backbone of industries and businesses, both big and small. 

Data engineering helps collect problems and dispensing solutions covering consumer interest and product availability. It’s a career that is critical for scaling and gaining valuable insights into the modern business world. 

What is Data Engineering? 

Data engineering is also known as information engineering; it translates to a software approach to developing information systems. In essence, data engineering comprises gathering, curating, and managing data from different sources and systems. 

Using this chain of command ensures that the result (collected data) is useful and accessible. Moreover, data engineering revolves around practical applications of collecting and analyzing data. 

To get accurate data, complex solutions are put into place, and data engineering is used for creating intricate paths to collect and authenticate data. These pathways include integrated data tools and artificial intelligence. 

Special mechanisms are used to gather data based on real-world scenarios. They help design, develop, and monitor intricate processing systems that ease data collection. 

Why is Data Engineering Important? 

Data engineering comes in handy by helping businesses optimize and utilize data. Some key aspects of data engineering include: 

  • Using the best practices to refine the software development life cycle
  • Discovering and rectifying information security loopholes thus protecting the business from cyber attacks
  • Learning more about business domain knowledge
  • Gathering data in one domain using data integration tools 

Data is used in every aspect of sales data and lead life cycle analysis. In recent times, advancements in technology have heavily impacted data vitality. 

Such advancements include open-source projects, cloud technology, and massive data growth in scale. Data engineering skills come into play more so in the organization of large data quantities. 

Data needs to be both comprehensive and coherent, and such is the task data engineers excelled at most. 

Who is a Data Engineer?

A data engineer studies and hones skills in database architectural design. These aspects come in handy in the collection, storage, and data analysis. Engineers are tasked with setting up analytics databases and pipelines for operational use. 

A huge chunk of their work involves preparing big data and ensuring data flows are effectively working. 

Data engineers design and develop algorithms and databases that ensure data scientists effectively run queries for machine learning, predictive analysis, and data mining. Data engineers are tasked with formatting structured and unstructured data. 

Structured data conforms to conventional databases, while unstructured data encompasses images, video, text, and audio that conventional data models do not accept. Data engineers learn and continue using different ways to assemble and format data. 

What is the Role of a Data Engineer? 

These are the different roles of data engineering: 

Generalist Data Engineers: This engineer works in small teams and collects end-to-end data. Generalists have numerous skills more than other data engineers. However, they have less knowledge about the system architecture. 

Because small teams have few users, generalist engineers don’t fuss about large-scale assignments and maintain a wholesome role. 

Database-Centric Data Engineers: Huge companies depend on database-centric data engineers to work on data held in different databases. Data-centric engineers concentrate majorly on analytics databases.

They work hand-in-hand with data scientists across numerous data warehouses and create table schemas. 

Pipeline-Centric Data Engineers: Mid-sized and larger companies hire pipeline-centric data engineers. 

Data engineers work across distributed systems on complex data science projects. A data pipeline works as a data workflow that consolidates data from different sources.

What Skills Are Required in Data Engineering? 

Data engineers are also considered software engineers with more skills. Below are various tools that help data engineers do their job:

APIs

Application Programming Interfaces (APIs) are critical for dealing with aspects related to data integration, such as data engineering. 

APIs are essential in every software engineering project. They are the link between applications and data transportation. 

Data engineering heavily depends on Representational State Transfer (REST) APIs that communicate over HTTP, thus making them an essential web-based tool asset. 

ETL Tools

Extract, transform, and load (ETL) describes a category of data integration technologies. 

Low-code Development

These are newer technologies that have replaced traditional ETL tools. However, ETL remains a paramount process in data engineering. SAP Data Services and Informatica are some of the fundamental tools for this intent. 

Which Programming Languages Are Used In Data Engineering? 

Several back-end and query languages and specialized languages are used for statistical computing in data engineering. C#, R, Ruby, SQL, Python, and Java are popular data engineering programming languages. SQL, Python, and R are often used together. 

Python is a general programming language with an extensive library and is easy to use. It’s perfect for ETL, thanks to its powerful and flexible language. Structured query language (SQL) performs ETL tasks. 

SQL is the standard language that queries relational databases that are a huge part of data engineering. R is the ultimate statistical computing programming language and software environment. R programming is popular amongst data miners and statisticians. 

Data Engineering Responsibilities 

Data engineers manage and organize data and keep check of inconsistencies and trends that may impact business goals. Data engineering is a high-tech position that demands experience and skills in computer science, programming, and mathematics. 

Data engineers also use soft skills to interpret data trends for the rest of the organization and help businesses utilize the collected data. Other common data engineering responsibilities include:

  • Data acquisition
  • Using data to find hidden patterns
  • Use data to develop set processes
  • Construct, create, test, and maintain architectures
  • Prepare data for prescriptive and predictive modeling 
  • Use data for discovering tasks that can be automated
  • Creating ways to improve data reliability, efficiency, and quality
  • Use analytics to deliver updates to stakeholders 

Conclusion 

Data engineering is a field encompassing aspects such as data gathering, data curation, and data collection. These are aspects that help businesses both small and large keep track of their performances. 

Data engineers play a critical role in managing, optimizing, retrieving, storing, and distributing data that is needed to keep companies running and keeping track of performance. 

DistantJob can provide skilled data engineers that will be an integral part of your organization.

Subscribe to our newsletter and get exclusive content and bloopers

or Share this post

Are you our next superstar remote developer?

You live, breathe and eat code, and have fun figuring out how to solve problems. And you love living in South America or Eastern Europe. But you don’t feel as fulfilled as your friends in North America.

I NEED A JOB